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Systems with time delay play an important role in modeling of many physical and biological processes. In
this paper we describe generic properties of systems with time delay, which are related to the appearance and
stability of periodic solutions. In particular, we show that delay systems generically have families of periodic
solutions, which are reappearing for infinitely many delay times. As delay increases, the solution families
overlap leading to increasing coexistence of multiple stable as well as unstable solutions. We also consider
stability issue of periodic solutions with large delay by explaining asymptotic properties of the spectrum of
characteristic multipliers. We show that the spectrum of multipliers can be split into two parts: pseudocontinu-
ous and strongly unstable. The pseudocontinuous part of the spectrum mediates destabilization of periodic
solutions.
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I. INTRODUCTION

The dynamical behavior of various physical and biologi-
cal systems under the influence of delayed feedback or cou-
pling can be modeled by including terms with delayed argu-
ments in the equations of motion. When the delay becomes
longer than the other characteristic time scales of the system,
a complicated and high-dimensional dynamics can appear
�1–6�. The analysis and control of such dynamical regimes is
important for many applications including lasers with optical
feedback or coupling �5,7,8�, neural activity control �9,10�,
and many others �11�. For instance, the following compli-
cated regimes have been observed in lasers with delayed
feedback: low-frequency fluctuations �12�, regular pulse
packages �13�, and coherence collapse, just to mention a few.

One of the fundamental question in the analysis of sys-
tems with delay concerns properties of periodic solutions.
Periodic solutions of any dynamical system, including also
systems with delay, are important parts of the dynamics.
When such solutions are stable, they can be directly ob-
served experimentally or numerically. In the case, when such
solutions are unstable, they play an important role, e.g., by
determining of a set of admissible initial values to be at-
tracted to some stable steady state �basin boundary�, or by
forming fundamental blocks of a chaotic attractor �14,15�.
Finally, unstable as well as stable periodic solutions can play
an important role in mediating any kind of soft or hard tran-
sitions as some control parameters are varied.

This paper is devoted to the study of generic properties of
periodic solutions in systems with a constant time delay,

x��t� = f�x�t�,x�t − ��� , �1�

where x�Rn and ��0 is the time delay. Since we investi-
gate the influence of the delay, we assume � to be our control
parameter. Delay has been used as a parameter in various
applications: chaotic systems with feedback �16,17�, network
motifs �18,19�, large networks or arrays of oscillators with
delayed coupling �20–23�, mechanical systems �24–27�, la-
ser systems with feedback �28� and coupling �29�, coupled
neurons �30,31�, chemical oscillators �32�, and delayed feed-

back control �8,10,33–40�. We believe that our results are
applicable to the all above-mentioned cases as well as to
many others, which include time delay as a controllable pa-
rameter.

The plan of the paper is as follows. Section II starts by
showing that periodic solutions in system �1� are forming
branches with respect to the control parameter �. These
branches are reappearing infinitely many times for different
delay values. As the delay increases, the solution branches
overlap leading to increasing coexistence of multiple stable
as well as unstable periodic solutions. The number of coex-
isting solutions is shown to be linearly proportional to the
delay time. Further in Sec. III, we consider stability proper-
ties of periodic solutions for systems with large delay by
explaining asymptotic properties of the spectrum of their
characteristic multipliers. The spectrum of multipliers can be
split into two parts: pseudocontinuous and strongly unstable.
Such situation is similar to the case of steady states in delay
systems with large delay �3,41,42�. The pseudocontinuous
spectrum mediates bifurcations of periodic solutions for sys-
tems with large delay. Sections IV and V discuss some im-
plications of the existence of pseudocontinuous spectrum and
possibility for its numerical computation.

The obtained results provide a better understanding of
mechanisms behind the growing multistability and dynamic
complexity in systems with delay. In particular, we show that
coexistence of multiple stable �as well as unstable� periodic
solutions is a natural feature of delay systems. The growing
“effective dimension” of dynamics with the growing delay is
supported by the fact that the dimensionality of unstable
manifolds of periodic solutions also grows linearly with de-
lay. Our results will be illustrated using two systems. The
first is the Duffing oscillator with delay,

x��t� + dx��t� + ax�t� + x3�t� + b�x�t� − x�t − ��� = 0, �2�

where x�t� is a real variable, d, a, and b are the positive real
parameters corresponding to damping, linear part of stiff-
ness, and delayed feedback strength. The second is the
Stuart-Landau oscillator with delayed feedback,
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z��t� = �� + i��z�t� − z�t��z�t��2 + z�t − �� , �3�

where z�t� is a complex variable, � and � are the real param-
eters.

II. REAPPEARANCE OF PERIODIC
SOLUTIONS AND BRANCHES

In this section we show that periodic solutions of system
�1� reappear infinitely many times for different and well-
specified values of delay �. We will also show that such
solutions typically form branches, which can be mapped one
onto another by some similarity transformation.

A. Reappearance of periodic solutions

Let us consider system �1�, which possesses a periodic
solution x0�t� for a time delay �=�0. Let T0 be the period of
this solution. Then it is easy to check that the same periodic
solution exists in system �1� with time delay �1=�0+T0. In-
deed, substituting x0�t� into Eq. �1� we obtain

x0��t� = f�x0�t�,x0�t − �1�� = f�x0�t�,x0�t − �0 − T0��

= f�x0�t�,x0�t − �0�� ,

where the periodicity of x0�t� is taken into account. Similarly,
the solution x0�t� reappears for all values �n=�0+nT0, with
n=1,2 ,3 , . . . of the delay. In Fig. 1 we presented a schematic
plot of reappearance of periodic solutions, where A is the
amplitude of x0�t� �maximum� as a function of �.

B. Reappearance of branches of periodic solutions

A periodic solution x0�t� can be generically continued to a
branch of periodic solutions x0�t ;�� with respect to the pa-
rameter �, at least in some neighborhood of �0. Denote T���
to be the period of these solutions along the branch. Since
each individual periodic solution reappears for every delay
time �+nT���, the whole branch will appear infinitely many
times as well �see Fig. 1�. It is naturally to distinguish the
first branch with the smallest delay and introduce the notion
of primary branch, which satisfies ��T���. For conve-
nience, let us parametrize the primary branch using the pa-
rameter l, which coincides with the delay on this branch
x0�t ; l�ªx0�t ;��. A solution x0�t ; l�, which corresponds to

some parameter value l, will appear again on the n-th branch
at time delay ��n , l�= l+nT�l� �see Fig. 1�. Thus, we obtain
the representation of the nth branch,

xn�t;��n,l�� = xn�t;l + nT�l�� = x0�t;l� . �4�

The corresponding mapping, which maps delay times, is
given as follows:

l → ��n,l� = l + nT�l� . �5�

Examples of the above described branches can
be numerously found in the research literature
�16,19,20,22,25,32,36,43�. Usually, these branches can be
found numerically. A useful tools for finding such branches is
the continuation software DDE-BIFTOOL �44�. In fact, only the
primary branch should be computed while the others can be
obtained using the transformation �Eq. �4��.

For the model of the Duffing oscillator �Eq. �2��, we have
found two types of branches, which are presented in Fig. 2.
Some other examples are given in Fig. 4. Note that due to the
nontrivial dependence of the period T��� along the branch
�see the right panel of the figure�, the mapping �Eq. �5�� is
not just a parallel shift but it also has more complicated
properties, which will be studied in Sec. II C.

C. Properties of the branches

As we have seen, the primary branch of periodic solutions
x0�t ; l� is characterized by a period function along the branch
T�l�. It is clear that the other branches have the same period
dependence T�l� since they consist of the same solutions.
Mapping �Eq. �5�� implies that the function T�l� determines
uniquely how branches reappear for larger delay times. Let
us discuss main properties of the map �Eq. �5�� and corre-
sponding implications.

1. Stretching and squeezing

Under the transformation �Eq. �5�� some parts of the
branch will be stretched and some parts squeezed. In particu-
lar if

FIG. 1. Reappearance of a periodic solution x0�t� for the delays
�n=�0+nT0, n=1,2 ,3 , . . .. T0 is the period of x0�t�. The figure is
schematic and shows a part of the branch of periodic solutions,
which can be obtained locally by continuation of x0�t� along the
parameter �. � is time-delay and A is the amplitude of a periodic
solution or some of its components.

FIG. 2. Branches of periodic solutions for the Duffing oscillator.
Left panel shows the amplitude A of the solutions xn�t ;�� versus
time delay �, right panel shows dependence of the period T along
the primary branch. Parameter values: ��a� and �b�� a=0.5, b=0.6,
and d=0.06; ��c� and �d�� a=1.38, b=0.4, and d=0.3. In �a�: the
first three branches are plotted in black and the rest in gray.
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� ���n,l�
�l

� = �1 + nT��l�� � 1, �6�

then the corresponding part will be locally stretched. Here
T��l�=dT�l� /dl is the derivative of the period function. If the
inverse inequality

� ���n,l�
�l

� = �1 + nT��l�� � 1 �7�

is satisfied, the corresponding branch parts will be locally
squeezed. With the increasing of n �which is equivalent to
increasing �� almost all parts of the branches will be
stretched, since �Eq. �6�� will be satisfied for large enough n.
Hence, the branches become eventually wider and occupy
larger � intervals. This leads to the growing overlapping of
branches and growing coexistence of periodic solutions with
increasing �. This effect is clearly visible in Figs. 2�a� and 4.

2. Multistability

Let us describe the above-mentioned phenomenon on a
more quantitative level. We will show that the number of
coexistent periodic solutions grows linearly with � and give
estimations for the corresponding coefficient. Let us consider
the two possible cases:

Case 1. The primary branch is confined to some interval
of � as in the case shown in Figs. 2�a�–2�d�. This means that
the primary branch ranges from lmin until lmax �lmin can be
zero�.

Case 2. The primary branch is bounded only from below,
i.e., it ranges from lmin until +�; see an example in Fig. 4�a�.

Consider the first case. Let us denote Tmax and Tmin to be
the maximum and the minimum of the period function T�l�
on the interval lmin� l� lmax. If Tmax=� then the problem can
be reduced to the case 2 since the next branch x1�t ; l+T�l��
=x0�t ; l� will be stretched up to �=� by the mapping �Eq.
�5��. Hence, Tmax and Tmin can be considered to be bounded.
In this case, all other branches are also bounded and exist for
delay values ��n , l�= l+nT�l�, lmin� l� lmin. In particular, the
nth branch ranges from

�min�n,l� = min
lmin�l�lmax

��n,l� = min
lmin�l�lmax

�l + nT�l��

until

�max�n,l� = max
lmin�l�lmax

��n,l� = max
lmin�l�lmax

�l + nT�l�� .

For large enough n, the minimal and maximal bounds of the
branches can be well approximated as follows:

�min�n,l� = n min� l

n
+ T�l�� 	 nTmin, �8�

�max�n,l� = n max� l

n
+ T�l�� 	 nTmax, �9�

up to the terms of order 1. Let us now find how many
branches are overlapping for some sufficiently large delay
value �. It is clear that these branches should satisfy the
condition

�min�n,l� � � � �max�n,l� .

Let m be the least number of the branch, which exists at
time delay � and k be the largest number, i.e., 3,

�max�m,l� 	 � and �min�k,l� 	 � ,

up to terms of order one, see Fig. 3. Taking into account Eqs.
�8� and �9�, we obtain

mTmax 	 kTmin 	 � ,

where the approximation sign means that the equality is sat-
isfied up to the order 1 terms �k and m are large�. All
branches with numbers m�n�k exist at time delay � �see
Fig. 3�. Hence, the number of overlapping branches can be
estimated as follows:

N 	 k − m = k − k
Tmin

Tmax
= k

Tmax − Tmin

Tmax
= 	1� , �10�

where the coefficient for this growth is given by

	1 =
Tmax − Tmin

TmaxTmin
=

1

Tmin
−

1

Tmax
. �11�

Expression �10� gives also a lower estimation for the number
of coexisting periodic solutions of system �1�. Indeed, if the
branches are folded like in Fig. 2�a� then one branch may
lead to more than one periodic solution for some delay val-
ues.

In a similar way, one can show that the number of coex-
isting branches in case 2 can be estimated as

N 	 	2� =
1

Tmin
� . �12�

Finally note that there may exist few primary branches,
which cannot be mapped one onto another by the transfor-
mation �Eq. �4��. In this case, each branch will reappear with
the increasing delay. The growth rate 	 in this case is given
as a superposition of the corresponding rates.

3. Turning points on branches

The branches may have turning points, which correspond
to a fold bifurcation for the family of periodic solutions. The
condition for the branch n to have a turning point can be
written as follows:

FIG. 3. Illustration to the derivation procedure of the formula
for the number of overlapping branches at time delay �. Left panel
shows the amplitude A of the solutions versus time delay �, right
panel shows dependence of the period T along the branch. Shown is
the delayed Duffing oscillator with parameter values a=1.38, b
=0.4, d=0.3, see also Fig. 2�c�. The branches k and m are shown in
black. More details are given in text.
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���n,l�
�l

= 0,

or taking into account Eq. �5�,

1 + nT��l� = 0. �13�

Equation �13� can be rewritten as

T��l� = −
1

n
. �14�

With the increasing of branch number n, the fold point tends
to some asymptotic value, which is independent on n and
given by the condition T��l�=0.

D. Example: Stuart-Landau oscillator with delay

In this paragraph we consider the following system:

z��t� = �� + i��z�t� − z�t��z�t��2 + z�t − �� , �15�

with the instantaneous part as the normal form for an oscil-
lator close to the supercritical Andronov-Hopf bifurcation.
Such system is called sometimes as the Stuart-Landau oscil-
lator �3,45�. The additional term z�t−�� accounts for a de-
layed feedback. Here z�t� is a complex variable, i.e., the sys-
tem has essentially two components, which can be chosen as
real and imaginary parts of z�t�.

Due to symmetry properties of this system, some of its
periodic solutions can be found analytically in the form of
rotating waves rei
t. Substituting this rotating wave into Eq.
�15�, we obtain the equation

i
 = �� + i�� − r2 + e−i
�,

which leads to the following expressions for the amplitude r
and frequency 
:

r = 
� + cos 
� , �16�


 = � − sin 
� . �17�

For the purposes of this paper, let us rewrite Eqs. �16� and
�17� in terms of the amplitude r and the period T=2� /
:

r =
� + cos�2�
�

T
� , �18�

T =
2�

� − sin�2�
�
T� . �19�

Expressions �18� and �19� are invariant under the change �
→�+nT, which reflects the fact that solutions on different
branches are identical.

Although the period T��� along the branch is given in the
implicit way by Eq. �19�, one can obtain an explicit paramet-
ric representation of the branches with respect to T and �. For
this, we introduce an additional parameter �=2�� /T. With
the help of this parameter, solutions of Eq. �19� can be writ-
ten as follows:

T��� =
2�

� − sin �
, �20�

���� =
� + 2�n

� − sin �
. �21�

Now the branches can be easily plotted by varying parameter
�. For �=1 the branches are unbounded �see Fig. 4�a��, and
for �=2 they are bounded �see Fig. 4�b��. Moreover, for �
=2 neighboring branches are connected. In both cases
branches are independent on � provided ��1 �see Eq. �19��.

As it is expected, the coexistence of multiple periodic
solutions grows with the increasing of delay. The number of
coexisting branches can be estimated using Eqs. �10� and
�12� as

N 	
1

Tmin
� =

� + 1

2�
�

in the case 0���1 and

N 	 � 1

Tmin
−

1

Tmax
�� =

�

�

for ��1. Taking into account folding of the branches, the
number of periodic solutions grows twice as fast, with the
increasing of the delay, i.e., with the rates ��+1�� /� and
2� /�, respectively.

III. STABILITY OF THE REAPPEARING PERIODIC
SOLUTIONS, LONG DELAY ISSUES

A. Some elements of the stability theory for periodic solutions

Let us introduce necessary notations and shortly remind
basic elements of the stability theory �46� for periodic solu-
tions of Eq. �1�.

The linearization of Eq. �1� around some periodic solution
p�t� with a period T has the following form


��t� = A�t�
�t� + B�t�
�t − �� , �22�

where A�t�=D1f�p�t� , p�t−��� and B�t�=D2f�p�t� , p�t−���
are the T-periodic matrices n�n. Here D1 and D2 denote
partial derivatives with respect to the first and the second

FIG. 4. Branches of periodic solutions of the Stuart-Landau os-
cillator with delay �. T is the period along the branch. Parametric
plot of Eqs. �20� and �21�; �a� �=1; �b� �=2. The branches are
independent on � provided ��1. 0���2�.
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arguments, respectively. Any solution of Eq. �22� with some
initial function q�t� can be represented as x�t ;s ,q�
=��t ;s�q, where ��t ;s� is the evolution operator �46�. The
monodromy operator is introduced as the evolution operator
evaluated at the period;

U = ��T;0� .

Stability of the periodic solution p�t� is determined by a
countable set of characteristic multipliers �46,47� � j, j
=1,2 , . . ., which are defined by the spectrum of U. The cor-
responding characteristic exponents are given as � j =

1
T ln � j.

A periodic solution is asymptotically stable if all its multipli-
ers have modulus less than one except for the trivial one,
which always equals to one. Equivalently, real parts of all
characteristic exponents must be negative except for the
trivial one. A bifurcation occurs when a multiplier crosses
unitary circle as a parameter change.

Practically, characteristic multipliers and stability of peri-
odic solutions can be computed using DDE-BIFTOOL software
�44� provided the time delay it not too large.

B. Stability of periodic solutions versus delay

Considering � as the control parameter, stability proper-
ties of periodic solutions are changing as � is varied. In gen-
eral, it is a challenging problem to find their stability, espe-
cially for larger �. Figure 5 shows largest characteristic
multipliers �with the largest modulus� for a periodic solution
of the delayed Duffing oscillator �Eq. �2�� for different delay
times. Even though the solution is the same, its stability
properties change as one moves from one branch to another.
One can clearly observe that more and more multipliers
come to a small neighborhood of the unitary circle. This
makes the problem degenerate and numerically stiff, i.e., the
increasing of delay requires increasing of numerical preci-
sion in order to determine stability of a solution.

In the following we propose an analytical technique,
which overcomes the appeared difficulty and shows how to

approximate the characteristic multipliers for larger delay
values. In particular we show that the characteristic multipli-
ers have similar properties to the properties of the eigenval-
ues of stationary states for systems with large delay
�3,41,42�.

The linearization of Eq. �1� around the solution xn�t ;�� on
nth branch �this solution coincides with x0�t ; l�� at time delay
�= l+nT�l� has the form


��t� = A�t;l�
�t� + B�t;l�
�t − �� , �23�

where

A�t;l� = D1f�x0�t;l�,x0�t − l;l�� ,

B�t;l� = D2f�x0�t;l�,x0�t − l;l�� �24�

are the T-periodic matrices, which depend only on function f
and a shape of the solution x0�t ; l�. It is important that A�t ; l�
and B�t ; l� do not depend on the branch number n and the
time delay �, at which the system is considered. This allows
us to study stability properties of periodic solutions asymp-
totically with �→�. Namely, by increasing � �or, equiva-
lently, branch number n� we are actually jumping from one
branch to another by keeping the relative position l within
the branch fixed, see Fig. 1. As a result, we consider the
same periodic solution x0�t ; l�, which exists for different in-
finitely increasing delay values, and we study stability prop-
erties of this solution as � increases. In the following, we
consider � to be continuous parameter and then apply the
obtained results to the countable set ��n , l�= l+nT�l�, with
n=0,1 ,2 , . . . of delay values.

C. Pseudocontinuous spectrum

Here we show that periodic solutions possess a family of
characteristic multipliers, which have the following
asymptotic representation:

���
�� = 1 +
1

�
��
� + O� 1

�2� , �25�

with the increasing of delay. Here 
 is a parameter along the
family and � is some real function. Taking into account the
relation �=e�T between characteristic exponents and multi-
pliers, the real parts of characteristic exponents have the fol-
lowing asymptotic representation:

T Re ��
� = ln����
��� 	
1

�
��
� + O� 1

�2� .

Using the analogy to the spectrum of eigenvalues for station-
ary solutions �3,41,42�, we will call such spectrum pseudo-
continuous. Its main features are the following:

�1� Pseudocontinuous spectrum tends to the critical value
���=1 as �→�.

�2� Its stability is determined by the sign of the function
��
�.

�3� For any finite �, the parameter 
 admits a discrete
countable number of values. As �→�, the spectrum tends to
a continuous in the sense that the discrete parameter 
 cov-
ers densely the whole interval �0,2��.

FIG. 5. Largest characteristic multipliers of a periodic solution
of the delayed Duffing oscillator for different values of delay. Dif-
ferent figures correspond to the same solution on different branches:
�a� branch n=2��=2.2�, �b� n=20��=23.7�, �c� n=80��=91.6�, and
�d� n=140��=159.5�. Other parameters are a=0.5, b=0.6, and d
=0.06.
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In the case, if a periodic solution has only pseudocontinu-
ous spectrum, its stability for large enough � will be uniquely
defined by the function ��
�.

Before we give a rigorous proof for the existence of the
pseudocontinuous spectrum, let us illustrate it using our nu-
merical example of the Duffing oscillator �Eq. �2��. Figure 6
shows approximations for the function ��
� by plotting � j
=���� j�−1� versus 
=arg�� j�, where � j are the numerically
obtained largest characteristic multipliers. One can see that
with increasing delay �, the plot tends to some continuous
curve, which determines stability of the periodic solution �it
is unstable here�. Below we give a proof for the existence of
pseudocontinuous spectrum. Those readers, who are not in-
teresting in details, may skip the rest in Sec. IV C.

Proof of the existence of pseudocontinuous spectrum.
Here we use the theory for linear delay differential equations
with periodic coefficients �46�, which is analogous to the
Floquet theory for ordinary differential equations. This
theory implies that �=e�T is the characteristic multiplier of
Eq. �23� if and only if there is a nonzero solution of Eq. �23�
of the form


�t� = p�t�e�t, �26�

where p�t�= p�t+T� is periodic. Substituting Eq. �26� into Eq.
�23�, we obtain

p��t� = �A�t;l� − �Id�p�t� + e−��B�t;l�p�t − �� . �27�

Since p�t� is T-periodic, we have p�t−��= p�t− l−nT�l��
= p�t− l� and system �27� reduces to

p��t� = �A�t;l� − �Id�p�t� + e−��B�t;l�p�t − l� . �28�

where the large parameter � occurs only as a parameter in
e−��. Thus, the corresponding monodromy operator of Eq.
�28�,

U = U��,e−��� ,

depends only on � and e−�� smoothly. Since the linear system
�Eq. �28�� possesses the periodic solution p�t� by construc-
tion, one of its characteristic multipliers equals to one. This
leads to the following condition on the monodromy operator:

�U��,e−��� − Id�p = 0,

which must hold for some periodic function p�t�. In general
case, this is a codimension one condition �54�, i.e., it leads to
some characteristic equation,

F��,e−��� = 0, �29�

for determining the characteristic exponents �. In order to
construct this characteristic equation, one can use the deter-
minant of the characteristic matrix introduced in �54� by for-
mula �2.8�.

Equation �29� allows proving the existence of pseudocon-
tinuous spectrum. Indeed, substituting

� =
�

�T
+ i




T
�30�

into Eq. �29�, we obtain up to the leading order

F�i



T
,e−�/Te−i
/T�� = 0. �31�

New unknown real variables in Eq. �31� are 
 and � instead
of complex � in Eq. �29�. In the following we will proceed
similarly to the case of the pseudocontinuous spectrum for
stationary states �42�. Let us introduce the artificial param-
eter � instead of rapidly growing phase 


T �;

F�i



T
,e−�/Te−i�� = 0. �32�

The obtained extended Eq. �32� can be generically solved
with respect to ��
� and ��
� since the equation is complex,
i.e., it contains two real equations for two variables � and �.
The obtained function ��
� is the resulting asymptotic func-
tion, which determines the pseudocontinuous spectrum �see
Fig. 6�. Coming back from the extended Eq. �32� to the origi-
nal one �Eq. �31��, we additionally have to take into account
the condition




T
� = ��
� + 2�k, k = 0, � 1, � 2, . . .

or equivalently




T
=

1

�
��
� +

2�k

�
. �33�

The last Eq. �33� determines the discrete values of 
=
k,
which correspond to the discrete values of the pseudocon-
tinuous spectrum ��
k�. As � increases, the set of 
k covers
densely the whole domain of 
.

As a result, the pseudocontinuous spectrum approaches
the continuous one as �→�. Note, that the asymptotically
continuous spectrum ��
� is determined by a regular system
of Eqs. �32�, which no longer contains the large parameter �.

FIG. 6. Largest characteristic multipliers for a periodic solution
of the Duffing oscillator with delay, which are rescaled accordingly
to the rule � j =���� j�−1� �vertical axis� and 
=arg�� j� �horizontal
axis�. With the increasing of �, such rescaled spectrum tends the
continuous curve ��
� representing the pseudocontinuous spectrum
as described by Eq. �25�. Parameter values are as in Fig. 5.
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Finally we remark that characteristic exponents �Eq. �30��
correspond to characteristic multipliers �Eq. �25��.

D. Strongly unstable spectrum

For completeness we show that another type of character-
istic multipliers may appear, which have different asymptot-
ics for large �. These multipliers are not approaching the
threshold value ���=1 as �→� but tending to some unstable
value

� → �̄, ��̄� � 1.

Since ��̄��1, the corresponding periodic solution is un-
stable. In the case when some periodic solution has a
strongly unstable multiplier, close-by solutions will diverge
on a time interval much shorter than the delay � because the
divergence rate is independent on the delay.

Strongly unstable spectrum may consist of finite number
of multipliers �less than n� and it occurs if and only if the
instantaneous part of Eq. �23�, i.e., the system of ordinary
differential equations �ODE�,


��t� = A�t;l�
�t� . �34�

is unstable. The unstable Floquet multipliers of this system
will serve as asymptotic values �̄ for the strongly unstable
characteristic multipliers of the system with delay �23�. An
example of strongly unstable spectrum is shown in Fig. 7.
Why does strongly unstable spectrum exist?

The idea of the proof is the following. Assume that there
is a characteristic multiplier � with �������1, which persists
for all �→� and do not scale with �. Then �−�/T→0 with
�→� and the delayed term

e−��B�t;l�p�t − l� = �−�/TB�t;l�p�t − l� �35�

in Eq. �28� becomes exponentially small comparing with the
term �A�t ; l�−�Id�p�t�. In fact, choosing large enough �, it
can be made arbitrary small. Therefore, Eq. �28� can be for-
mally reduced to the ODE

p��t� = �A�t;l� − �Id�p�t� . �36�

The condition for Eq. �36� to have a multiplier equal to one
reduces to the equation

det�U0 − e�TId� = 0, �37�

where U0 is the monodromy matrix of the ODE �Eq. �34��.
Since the solutions of Eq. �37� are characteristic multipliers
of Eq. �34�, the strongly unstable multiplier will approach an
unstable multiplier �̄=e�T of Eq. �34�.

IV. ASYMPTOTIC STABILITY OF BRANCHES

Let us discuss the main consequences, which follow from
the existence of the pseudocontinuous spectrum. First of all,
let us note, that the sequence of periodic solutions xn�t ,��
=x0�t , l�, which repeat themselves at time delays l+nT�l�,
has a well defined stability limit as n increases. This means
that all solutions from this sequence with large enough n will
be stable if the corresponding pseudocontinuous spectrum is
stable and no strongly unstable spectrum is present. Other-
wise, the corresponding solutions will be unstable. In other
words, in the limit of large delay, the branches of periodic
solutions have well defined stability structure, i.e., there will
be some stable part as well as unstable part. The unstable
part can be again split into strongly unstable �if there are
strongly unstable multipliers� or weakly unstable �when only
pseudocontinuous spectrum is unstable�. The corresponding
parts can be described by the parameter l on the branches.
Figure 8 illustrates this using the Stuart-Landau model with
�=2 and �=2, see caption to the figure.

Taking into account that almost all parts of the branches
are eventually stretching with the increasing of delay, an in-
creasing coexistence of stable as well as unstable periodic
solutions is generally expected in systems with large delay.
The relative fraction of stable solutions depends on a specific
system, more exactly, on the asymptotic spectrum distribu-
tion along the branch.

V. COMPUTATION OF THE PSEUDOCONTINUOUS
SPECTRUM

The main equation for finding branches ��
�, to which
the pseudocontinuous spectrum tends to, is given by Eq.

FIG. 7. Example of a strongly unstable spectrum for a periodic
solution of Duffing oscillator with delay. Single multiplier with
large modulus is the strongly unstable one. The others are belonging
to the pseudocontinuous spectrum. �a� Modulus of largest charac-
teristic multipliers versus branch numbers �delay is increasing�. �b�
Rescaled spectrum, i.e., �����−1� versus argument of � for largest
characteristic multipliers of a periodic solution on the branch 40.
Note the scale on the vertical axis. Parameter values: a=0.5, b
=0.6, and d=0.06.

FIG. 8. This figure illustrates how branches of periodic solutions
of the Stuart-Landau oscillator have asymptotically well-defined
stability structure. Black solid lines �−1.22�� mod 2��1.18� cor-
respond to asymptotically stable parts of the branch for large
enough delay, dashed �1.868�� mod 2��4.415� are strongly un-
stable, and the remaining parts are weakly unstable and shown in
gray. Parameter values are �=�=2.
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�32�. As follows from Sec. IV, the equivalent problem can be
formulated as follows:

For any given 
, find a value of �=��
� and ��
� such
that the following linear system with delay

p��t� = �A�t;l� − i



T
Id�p�t� + e−�/T−i�B�t;l�p�t − l� �38�

has a multiplier 1. Here l=� mod T and A�t ; l� and B�t ; l� are
determined by linearizing Eq. �1� around the given periodic
solution with period T; see Eq. �24�. Equivalently, the fol-
lowing extended system can be considered:

x��t� = f�x�t�,x�t − ��� ,

p��t� = 
D1f�x�t�,x�t − l�� − i



T
Id�p�t� + e−�/T−i�D2f�x�t�,x�t

− l��p�t − l� , �39�

with the following additional conditions:

p�t� = p�t + T� ,

x�t� = x�t + T� ,

�p�t�� = 1, �40�

where the first two conditions ensure periodicity and the sec-
ond one ensures that p�t� is nontrivial. Additionally, one
should add here a condition, which fixes the phase, e.g.,
Im p�0�=0, since all functions of the form p�t�ei� will be
also solutions of Eq. �38�. The obtained problem is a typical
continuation problem, which no longer includes the large
parameter �. Standard continuation algorithms should be
used in order to find the functions ��
� and ��
�.

The implementation of the continuation algorithm will be
discussed elsewhere �48�. Instead, we discuss here cases, for
which the above problem can be significantly simplified.

Case 1. � mod T=0. This situation appears if system �1�
has a periodic solution at �=0. In this case, Eq. �38� is re-
duced to the ODE,

p��t� = �A�t;l� − i



T
Id + e−�/T−i�B�t;l��p�t� �41�

and the equivalent problem for finding functions ��
� and
��
� reduces to the finite-dimensional ODE continuation
�49,50�.

Case 2. System �1� has an additional phase shift symme-
try. Examples of such systems are the Stuart-Landau oscilla-
tor �Eq. �15�� or the Lang-Kobayashi system
�3,12,41,51–53�. In this case, the periodic orbits, which are
invariant with respect to the symmetry, can be transformed
into the stationary states by a suitable change of coordinated.

VI. CONCLUSIONS

To conclude, we have investigated properties of periodic
solutions of systems with delay. In particular, we have shown
that:

�i� Periodic solutions of systems with delay are organized
in infinitely many branches.

�ii� The branches of periodic solutions can be obtained as
the mapping �Eqs. �4� and �5�� of a primary branch on an
appropriate interval of �. From the practical points of view, it
is sufficient to calculate only the primary branch.

�iii� The branches are eventually becoming wider with the
increasing of �, i.e., they occupy larger � interval. As a result,
the multistability of periodic solutions grows as delay in-
creases.

�iv� This growth of the multistability is linear �Eq. �10��
and the corresponding estimation is given in Eqs. �11� and
�12�.

�v� One can effectively study asymptotic stability proper-
ties of periodic solutions as �→�.

�vi� As � becomes larger, the spectrum of characteristic
multipliers of periodic solutions is generically split into two
parts: pseudocontinuous spectrum and strongly unstable
spectrum.

�vii� The main properties and implications of pseudocon-
tinuous spectrum are explained. In particular, pseudocontinu-
ous spectrum controls the destabilization of periodic solu-
tions. It shows also that the destabilization mechanism of
periodic solutions should be similar to that of spatially ex-
tended systems �1,3�. Moreover, it implies that the dimen-
sionality of unstable manifolds of periodic orbits grows lin-
early as delay increases.

�viii� Strongly unstable spectrum is present when the in-
stantaneous part of the linearization around the periodic so-
lution is unstable. In this case, the feedback plays minor role,
see also �23�.

In our paper we have also outlined the scheme for practi-
cal computation of the pseudocontinuous spectrum although
the numerical implementation of the corresponding path-
following algorithm �see Eqs. �39� and �40�� will be dis-
cussed elsewhere �48�.
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